

CO₂ Capture from IGCC Gas Streams Using the AC-ABC Process

2012 NETL CO₂ Capture Technology Meeting July 8-12, 2012 Pittsburgh, PA.

© 2012 SRI International

SRI- Who We Are A world-leading independent R&D organization

- Founded by Stanford in 1946
 - Non-profit corporation; became independent in 1970
 - Name changed to SRI International in 1977
- 2,100 staff members; more than 20 locations worldwide
- 2011 revenues: ~\$585 million.

CO₂ Capture Programs at SRI

Pilot Unit for Capture of CO2 from Air © 2012 SRI International Advanced Carbon Sorbent Process Field Demonstration at U. Toledo

250 kW Chilled Ammonia Process Mini-pilot System 50 kW High Temperature PBI Membrane Skid.

Project Overview

- Project Participants:
 - SRI International.
 - Bechtel Hydrocarbon Treatment Solutions, Inc.
 - EIG, Inc.
 - National Carbon Capture Center
 - U.S. Department of Energy (National Energy Technology Center)
- Funding:
 - U.S. Department of Energy: \$3,428,309
 - Cost Share (SRI and BHTS): \$897,660
 - Total: \$4,325,969
- Performance Dates:
 - September 2010 through September 2013.

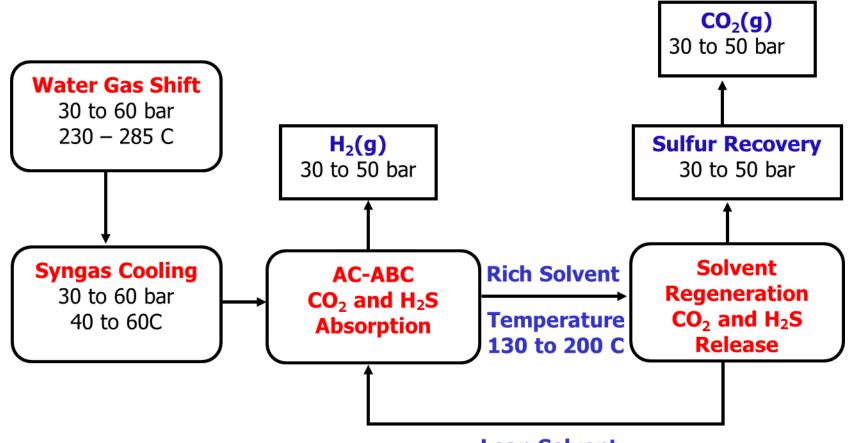
Project Objectives

• Overall objective:

 To develop an innovative, low-cost CO₂ capture technology based on absorption on a high-capacity and low-cost aqueous ammoniated solution with high pressure absorber and desorber.

• Specific objectives:

- Test the technology on a bench scale batch reactor,
- Determine the preliminary optimum operating conditions,
- Design and build a small pilot-scale reactor capable of continuous integrated operation,
- Perform tests to evaluate the process in a coal gasifier environment,
- Perform a technical and economic evaluation on the technology.


Process Fundamentals

 Uses well-known reaction between carbon dioxide and aqueous ammonia : NH₄OH+CO₂ ← > NH₄HCO₃

 $(NH_4)_2CO_3+CO_2+H_2O \iff 2NH_4HCO_3$ $NH_4(NH_2CO_2)+CO_2+2H_2O \iff 2NH_4HCO_3$

- Reactions are reversible
 - Absorption reactions at lower temperature
 - Desorption reactions at higher temperature
- High pressure operation enhances absorption of CO₂.
- A similar set of reactions occur between H₂S and ammoniated solution.
- H₂S from the regenerated gas is converted to elemental sulfur at high pressures.

Process Block Flow Diagram

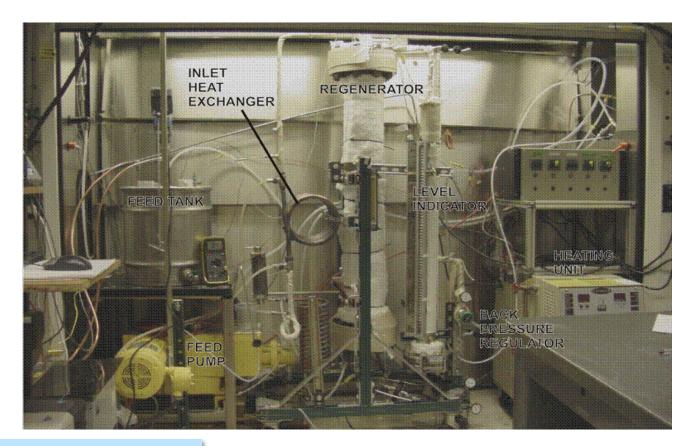
Lean Solvent

Process Highlights

- Concentrated ammoniated solution is used to capture CO₂ and H₂S from syngas at high pressure.
- Absorber operation at 40°-60° C temperature; No refrigeration is needed.
- CO₂ is released at high pressures (40 bar) at <200°C:
 - The size of CO₂ stripper, the number of stages of CO₂ compression, and the electric power for compression of CO₂ to the pipeline pressure are reduced.
- High net CO₂ loading, up to 20% by weight.
- The stripper off-gas stream, containing primarily CO₂ and H₂S, is treated in the BPSC process to remove the sulfur

Process Advantages

- Low cost and readily available reagent (aqueous ammonia).
- Reagent is chemically stable under the operating conditions.
 - Ammonia does not decompose under the operating conditions.
- High efficiency for CO₂ capture
 - Reduces water-gas shift requirements Reduced steam consumption.
- No loss of CO₂ during sulfur recovery
 - High pressure conversion; No tail gas treatment
- Low heat consumption for CO₂ stripping (<600 Btu/lb CO₂).
- Extremely low solubility of H₂, CO and CH₄ in absorber solution
 - Minimizes losses of fuel species.
- Absorber and regenerator can operate at similar pressure.
 - No need to pump solution cross pressure boundaries. Low energy consumption for pumping.
- Process can be applied to existing and new IGCC power plants.

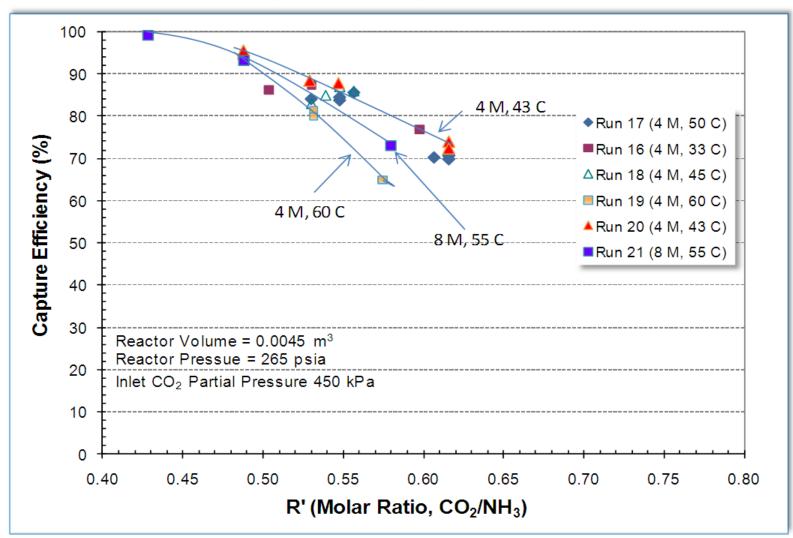

Project Tasks

- Task 1: Bench-scale Batch Tests:
 - Results were presented at 2011 NETL Carbon Capture Technology Conference
- Task 2: Pilot-Scale Integrated, Continuous Tests
 - Focus of the current effort (July 2012 through September 2013)
- Task 3: Project Management

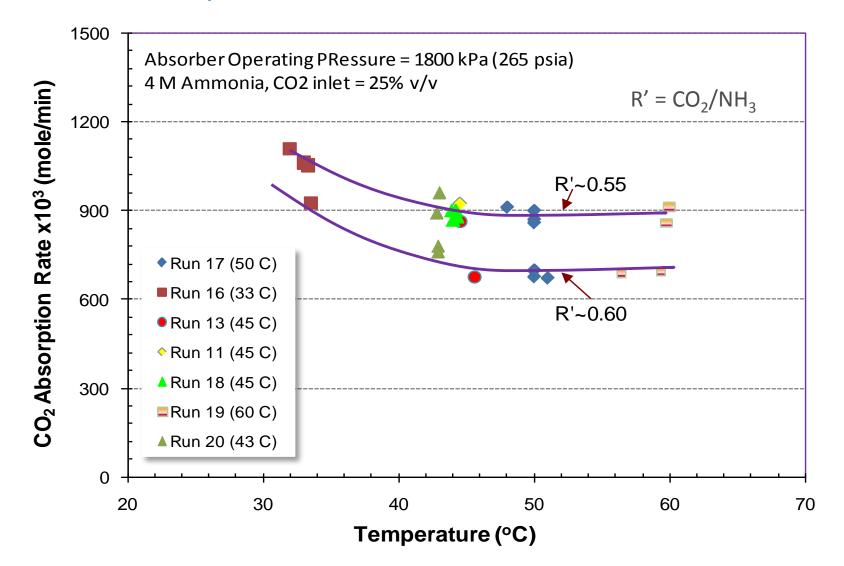
Project Schedule

Task	Activity	Month From the Start													
		F	FY10 FY11					F	FY 12 FY13						
		3	6	9	12	15	18	21	24	27	30	33	36	39	42
Task 1	Bench Scale Testing														
1.1	Batch test Unit Construction														
1.2	Test Plans														
1.3	Absorber Tests														
1.4	Regenerator Tests														
1.5	Bench-Scale Test Data Analysis														
1.6	Preliminary Process Modeling														
1.7	Preliminary Economic Analysis														
	Continuation Application Review														
Task 2	Pilot-Scale Continuous, Integrated Tests														
2.1	Design of the Pilot-Scale Continuous, Integrated Test System														
2.2	Construction of the Pilot-Scale Integrated Test System														
2.3	Pilot Scale Test Plans														
2.4	Pilot-Scale Tests														
2.5	Process Modeling														
2.6	Economic Analysis														
3	Project Management and Planning														

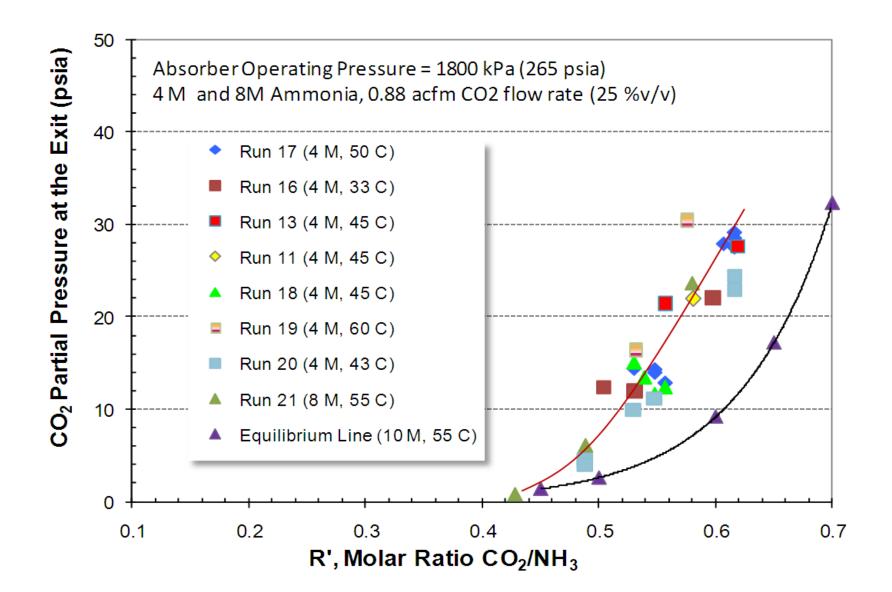
Bench-Scale Regenerator Testing

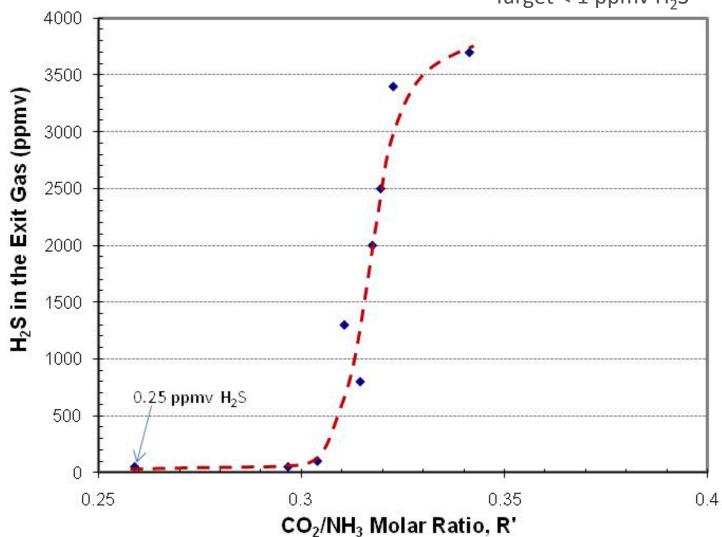


T: 100 - 170 C P: 10-40 bar Feed CO₂ Loading: 10-20 wt%

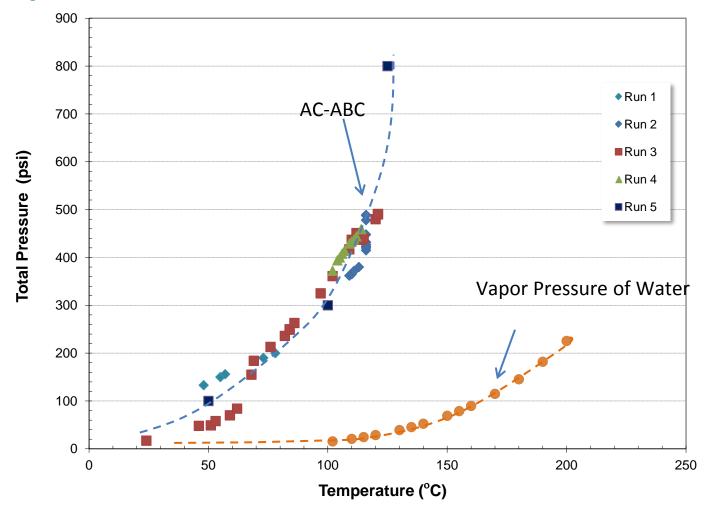

© 2012 SRI International

CO₂ Capture Efficiency vs Solution Composition

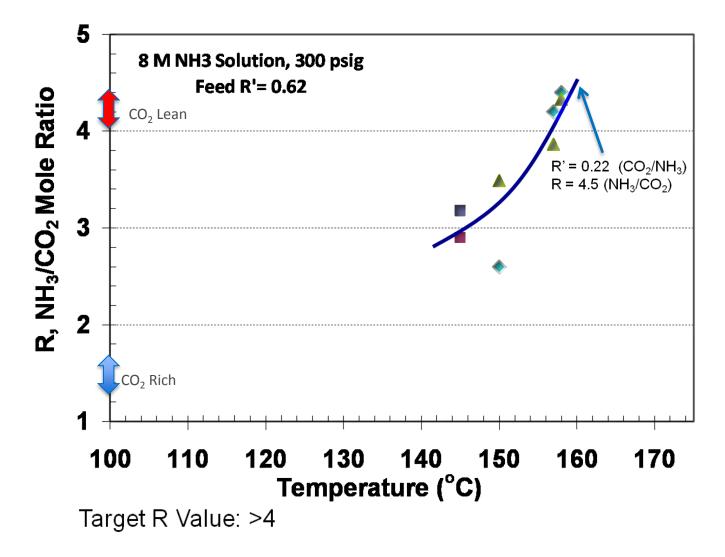

CO₂ Capture Efficiency Exceeds 90%

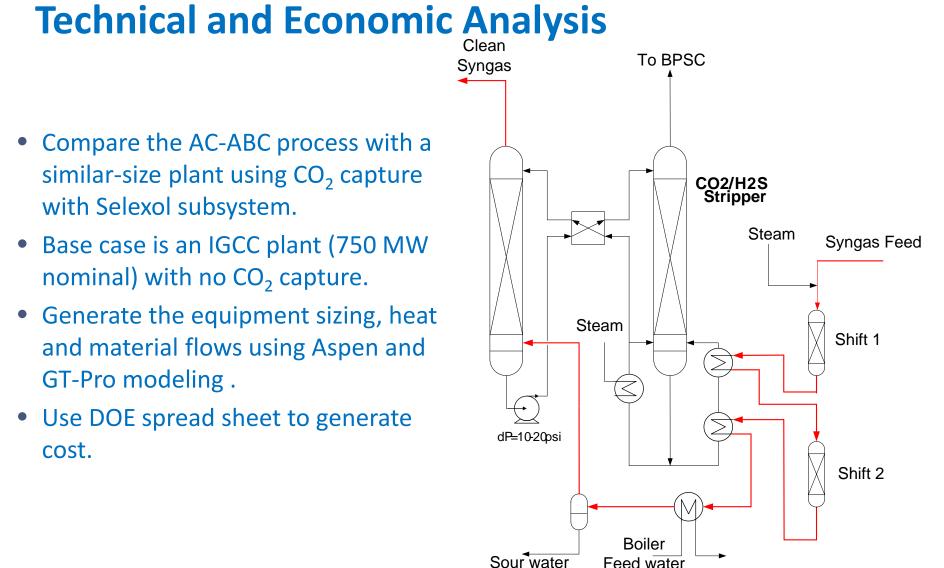

No Significant Decrease in the Rate of Absorption at Elevated Temperatures

Rapid Rate of Reactions Approaching Equilibrium

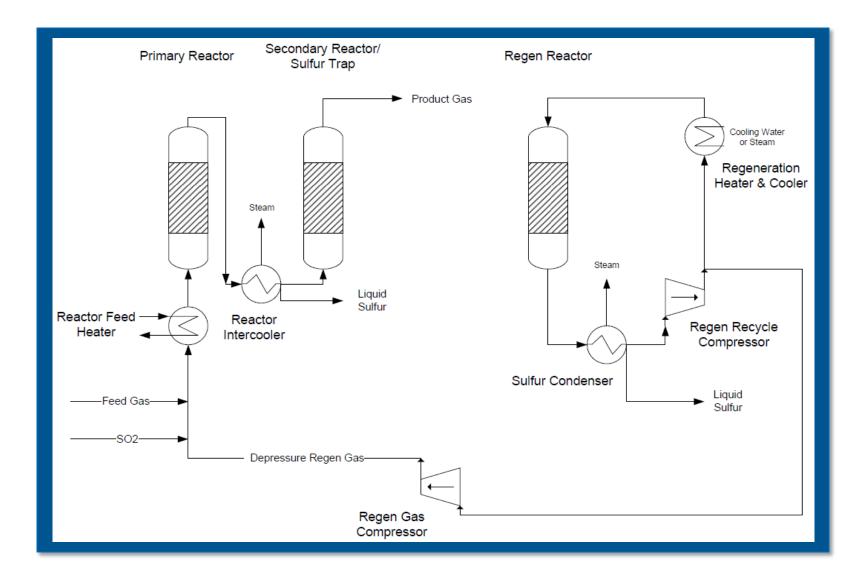


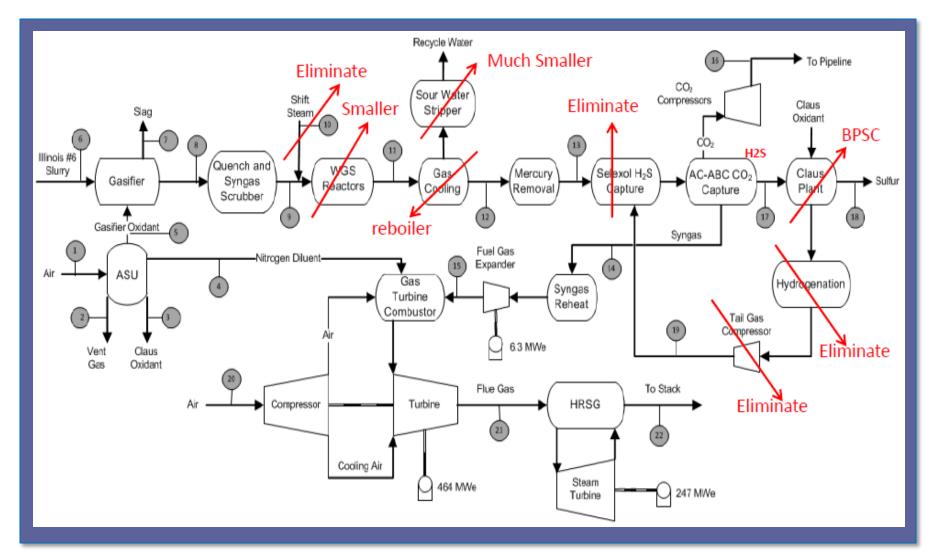
High Efficiency of H₂S Capture



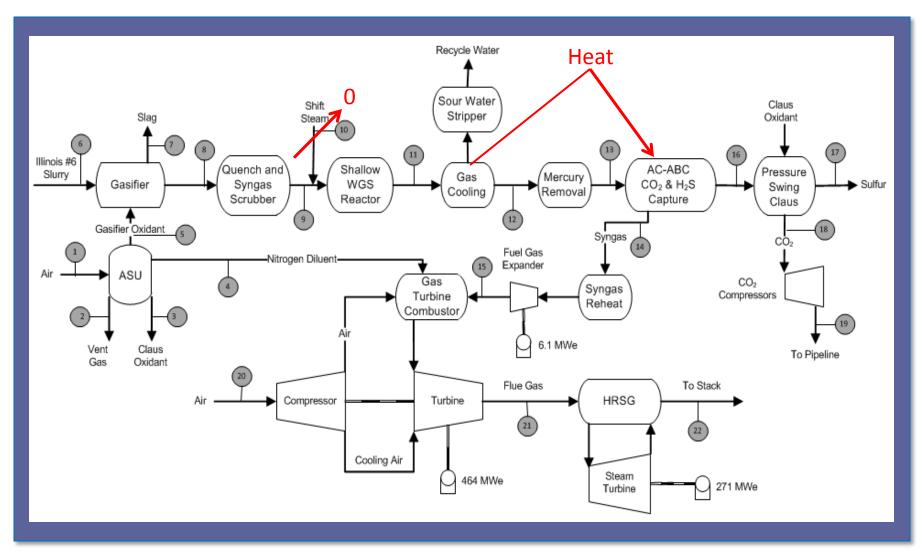

Target < 1 ppmv H_2S

Measured CO₂ Attainable Pressure Function of Temperature


High Levels of Solvent Regeneration at Moderate Temperatures



Process Energy Requirements: CO₂ stripping, solution pumping, and CO₂ compression


Bechtel High-Pressure Claus Process

AC-ABC and BPSC Process Changes to IGCC Reference Case

IGCC with AC-ABC for CO2/H2S capture with BPSC

DOE Economic Analysis Presented at 11th Annual Conference on CCUS

Economic Analysis (June 2011\$)	IGCC with SRI AC- ABC and BPSC	Reference Case	
Total Plant Cost, before Owner's Costs, million	\$1,676	\$1,785	
Total Plant Cost, before Owner's Costs	\$2,962/kW	\$3,286/kW	
Initial Chemical Fill Cost, million	\$4.3	\$15.9	
Annual Fixed O&M Cost, million	\$64.5	\$68.0	
Annual Variable O&M Cost, million	\$42.4	\$45.9	
Total Annual O&M Cost, million	\$106.9	\$113.9	
FY COE* without TS&M**	\$108.28	\$118.85	
FY COE with TS&M	\$113.33	\$124.04	

*FY COE = First Year Cost of Electricity

**TS&M = Transport, Storage, and Monitoring

Plant Performance Summary

DOE Presentation at 11th Annual Conference on CCUS

Plant Performance	Units	IGCC with SRI AC- ABC and BPSC	Reference Case		
Gas Turbine Power	MWe	464.0	464.0		
Syngas Expander Power	MWe	5.7	6.5		
Steam Turbine Power	MWe	246.2	263.5		
Auxiliary Load	MWe	150.0	190.8		
Net Plant Power	MWe	565.9	543.3		
Net Plant Efficiency (HHV)	-	33.7%	32.6%		
Net Plant Heat Rate (HHV)	kJ/kWh Btu/kWh	10,679 10,122	11,034 10,458		

Anticipated Benefits, if Successful

- We estimate a 22.7 MW improvement in Net Plant Power and a 1.1 percentage point increase in Net Plant Efficiency (HHV basis) than a reference plant (GE gasifier with Selexol AGR and conventional Claus).
- The capital cost is ~6% less expensive than the reference plant on an absolute basis.
- The COE is 9% lower for the SRI AC-ABC and BPSC plant relative to the reference case.
- The process configuration is economically viable per this analysis.
- The project will be tested in this Budget Period in an operating gasifier environment that will lead to further system improvements.

Acknowledgement

- SRI International
 - Gopala Krishnan Associate Director (MRL) and Principal Investigator
 - Indira Jayaweera, Jordi Perez, Anoop Nagar, Daniel Steel and Esperanza Alavarez
 - Angel Sanjurjo Materials Research Laboratory Director and Project Supervisor
- EIG: Eli Gal
- Bechtel Hydrocarbon Treatment Solutions:
 - Lee Schmoe and Martin Taylor
- National Carbon Capture Center: Frank Morton and Tony Wu
- DOE-NETL
 - Elaine Everett, Megan Napoli, Susan Maley, Jenny Tennent, James Black, Peter Kabateck

Thank You

Headquarters: Silicon Valley

SRI International 333 Ravenswood Avenue Menlo Park, CA 94025-3493 650.859.2000

Washington, D.C.

SRI International 1100 Wilson Blvd., Suite 2800 Arlington, VA 22209-3915 703.524.2053

Princeton, New Jersey

SRI International Sarnoff 201 Washington Road Princeton, NJ 08540 609.734.2553

Additional U.S. and international locations

www.sri.com